Abstract

This study builds on a continued effort to document potential long-term research impacts on the individual, as well as to identify potential markers of survival for use in a field framework. The Transient Juvenile Steller sea lion (TJ) project was developed as a novel framework to gain access to wild individuals. We used three analyses to evaluate and predict long-term survival in temporarily captive sea lions (n = 45) through Cormack-Jolly-Seber open population modelling techniques. The first analysis investigated survival in relation to the observed responses to handling stress through changes in six principal blood parameters over the duration of captivity. The second analysis evaluated survival compared with body condition and mass at entry and exit from captivity. Finally, the third analysis sought to evaluate the efficacy of single-point sampling to project similar survival trends for use in field sampling operations. Results from a priori models ranked through Akaike information criterion model selection methods indicated that mass gains (4.2 ± 12%) over captivity and increases in leucocytes (WBC, 1.01 ± 3.54 × 10(3)/mm(3)) resulted in a higher average survival rate (>3 years). Minor support was identified for the single-point measures of exit mass and entry WBC. A higher exit mass predicted a higher survival rate, whereas a higher WBC predicted a lower survival rate. While changes in mass and WBC appear to be the best predictors of survival when measured as a change over time, single-point sampling may still be an effective way to improve estimates of population health.

Highlights

  • This study builds on a continued effort to document potential long-term research impacts on the individual, as well as to identify potential markers of survival for use in a field framework

  • Results from a priori models ranked through Akaike information criterion model selection methods indicated that mass gains (4.2 ± 12%) over captivity and increases in leucocytes (WBC, 1.01 ± 3.54 × 103/mm3) resulted in a higher average survival rate (>3 years)

  • Population decline in the western distinct population segment of Steller sea lions (Eumetopias jubatus) has led to a substantial effort to understand the population dynamics and life-history strategies of this endangered species

Read more

Summary

Introduction

Population decline in the western distinct population segment of Steller sea lions (Eumetopias jubatus) has led to a substantial effort to understand the population dynamics and life-history strategies of this endangered species. While the cause of the decline will probably remain a mystery, there is a continued need for accurate predictions of population health and resiliency to ensure effective management strategies.

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.