Abstract
Fe-based nanoparticles (Fe-based NPs) have great potential as a substitute for traditional Fe-fertilizer; however, their environmental risk and impact on plant growth are not fully understood. In this study, we compared the physiological impacts of three different Fe-based NP formulations: zero-valent iron (ZVI), Fe3O4 and Fe2O3 NPs, on hydroponic rice after root exposure for 2 weeks. Fe-normal (Fe(+)) and Fe-deficiency (Fe(-)) conditions were compared. Results showed that low dose (50mgL-1) of ZVI and Fe3O4 NPs improved the rice growth under Fe(-) condition, while Fe2O3 NPs did not improve plant growth and caused phytotoxicity at high concentration (500mgL-1). Under Fe(+) conditions, none of the Fe-based NPs exhibited positive effects on the rice plants with plant growth actually being inhibited at 500mgL-1 evidenced by reduced root volume and leaf biomass and enhanced oxidative stress in plant. Under Fe(-) condition, low dose (50mgL-1) of ZVI NPs and Fe3O4 NPs increased the chlorophyll content by 30.7% and 26.9%, respectively. They also alleviated plant stress demonstrated by the reduced oxidative stress and decreased concentrations of stress related phytohormones such as gibberellin and indole-3-acetic acid. Low dose of ZVI and Fe3O4 NPs treatments resulted in higher Fe accumulation in plants compared to Fe2O3 NPs treatment, by down-regulating the expression of IRT1 and YSL15. This study provides significant insights into the physiological impacts of Fe-based NPs in rice plants and their potential application in agriculture. ZVI and Fe3O4 NPs can be used as Fe-fertilizers to improve rice growth under Fe-deficient condition, which exist in many rice-growing regions of the world. However, dose should be carefully chosen as high dose (500mgL-1 in this study) of the Fe-based NPs can impair rice growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.