Abstract
We studied the physiological status of juvenile turbot (Scophthalmus maximus L.) under severe hypoxia (1 and 2 mg/L dissolved oxygen, DO), hypoxia (3 and 5 mg/L DO), hyperoxia (11 and 14 mg/L DO) and normoxia (7 mg/L DO, control) conditions. The respiratory rates, haematology parameters, acid–base balance status and gill structure were analysed to find the effects of different DO concentration on turbot. Fish mortality was only observed under severe hypoxia conditions. Severe hypoxia caused an increase in respiratory rates and red blood cell counts, as well as an increase in haemoglobin and haematocrit levels in the fish. In fish exposed to hypoxia conditions, the respiratory rate increased overall as the DO concentration decreased. Lower pCO2 and HCO3− levels led to a high blood pH, while the pO2 remained stable. In hyperoxia groups, respiratory rate decreased as the DO concentration increased. The levels of pCO2 and HCO3− significantly increased (P < 0.05), while the pO2 level and blood pH did not change obviously. The gill structure was damaged after prolonged exposure to hyperoxia, but no obvious damage was found in hypoxia groups. The fish that survived the hypoxia or hyperoxia treatment were able to restore the structural integrity of the gills after 14 days' recovery. The results suggest that juvenile turbots can tolerate a wide range of DO concentrations. However, even mild hyperoxia condition (11 mg/L DO), which is widely used in fish culture, has adverse effects on juvenile turbot physiology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.