Abstract

BackgroundSoft wearable robots (exosuits), being lightweight, ergonomic and low power-demanding, are attractive for a variety of applications, ranging from strength augmentation in industrial scenarios, to medical assistance for people with motor impairments. Understanding how these devices affect the physiology and mechanics of human movements is fundamental for quantifying their benefits and drawbacks, assessing their suitability for different applications and guiding a continuous design refinement.MethodsWe present a novel wearable exosuit for assistance/augmentation of the elbow and introduce a controller that compensates for gravitational forces acting on the limb while allowing the suit to cooperatively move with its wearer. Eight healthy subjects wore the exosuit and performed elbow movements in two conditions: with assistance from the device (powered) and without assistance (unpowered). The test included a dynamic task, to evaluate the impact of the assistance on the kinematics and dynamics of human movement, and an isometric task, to assess its influence on the onset of muscular fatigue.ResultsPowered movements showed a low but significant degradation in accuracy and smoothness when compared to the unpowered ones. The degradation in kinematics was accompanied by an average reduction of 59.20±5.58% (mean ± standard error) of the biological torque and 64.8±7.66% drop in muscular effort when the exosuit assisted its wearer. Furthermore, an analysis of the electromyographic signals of the biceps brachii during the isometric task revealed that the exosuit delays the onset of muscular fatigue.ConclusionsThe study examined the effects of an exosuit on the characteristics of human movements. The suit supports most of the power needed to move and reduces the effort that the subject needs to exert to counteract gravity in a static posture, delaying the onset of muscular fatigue. We interpret the decline in kinematic performance as a technical limitation of the current device. This work suggests that a powered exosuit can be a good candidate for industrial and clinical applications, where task efficiency and hardware transparency are paramount.

Highlights

  • Soft wearable robots, being lightweight, ergonomic and low power-demanding, are attractive for a variety of applications, ranging from strength augmentation in industrial scenarios, to medical assistance for people with motor impairments

  • In the never-ending quest to push the boundaries of their motor performance, humans have designed a wealth of wearable robotic devices

  • (2019) 16:29 patients [7,8,9], harvesting energy from human movements [10] and helping to study fundamental principles underlying human motor control [11, 12]. These feats were achieved with machines made of rigid links of metal and capable of accurately and precisely delivering high forces to their wearer. While this is undeniably an advantage, it comes at a cost: 1) a significant inertia, which affects both the kinematics of human movement and the power requirements of the device; 2) the need for the joints of the robot to be aligned with the biological joints [13], resulting in increased mechanical complexity and size [14]; 3) a strong cosmetic impact, shown to be linked with psychological health and well-being [15]

Read more

Summary

Introduction

Soft wearable robots (exosuits), being lightweight, ergonomic and low power-demanding, are attractive for a variety of applications, ranging from strength augmentation in industrial scenarios, to medical assistance for people with motor impairments Understanding how these devices affect the physiology and mechanics of human movements is fundamental for quantifying their benefits and drawbacks, assessing their suitability for different applications and guiding a continuous design refinement. Xiloyannis et al Journal of NeuroEngineering and Rehabilitation (2019) 16:29 patients [7,8,9], harvesting energy from human movements [10] and helping to study fundamental principles underlying human motor control [11, 12] These feats were achieved with machines made of rigid links of metal and capable of accurately and precisely delivering high forces to their wearer. While this is undeniably an advantage, it comes at a cost: 1) a significant inertia, which affects both the kinematics of human movement and the power requirements of the device; 2) the need for the joints of the robot to be aligned with the biological joints [13], resulting in increased mechanical complexity and size [14]; 3) a strong cosmetic impact, shown to be linked with psychological health and well-being [15].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.