Abstract

BackgroundCerasus sachalinensis is widely used in cool regions as a sweet cherry rootstock and is known for its sensitivity to soil waterlogging and waterlogging stress. However, the limited availability of Cerasus genomic resources has considerably restricted the exploration of its waterlogging response mechanism. To understand its reaction to short-term waterlogging, we analyzed the physiology and transcriptomes of C. sachalinensis roots in response to different waterlogging durations.ResultsIn this study, 12,487 differentially expressed genes (DEGs) were identified from Cerasus sachalinensis roots under different waterlogging durations. Carbon metabolism and energy maintenance formed the first coping mechanism stage of C. sachalinensis in response to low oxygen conditions. Root energy processes, including root respiration and activities of the fermentation enzymes alcohol dehydrogenase, pyruvate decarboxylase, and lactate dehydrogenase, showed unique changes after 0 h, 3 h, 6 h, and 24 h of waterlogging exposure. Ribonucleic acid sequencing was used to analyze transcriptome changes in C. sachalinensis roots treated with 3 h, 6 h, and 24 h of waterlogging stress. After de novo assembly, 597,474 unigenes were recognized, of which 355,350 (59.47%) were annotated. To identify the most important pathways represented by DEGs, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases were used to compare these genes. The first stage of root reaction to waterlogging stress was activation of carbohydrate metabolism to produce more glucose and maintain energy levels. At 3 h, the glycolytic and fermentation pathways were activated to maintain adenosine triphosphate production. At 24 h, pathways involved in the translation of proteins were activated to further assist the plant in tolerating waterlogging stress. These findings will facilitate a further understanding of the potential mechanisms of plant responses to waterlogging at physiological and transcriptome levels.ConclusionsCarbon metabolism and energy maintenance formed the first coping mechanism C. sachalinensis in response to low oxygen conditions, and they may be responsible for its short-term waterlogging response. Our study not only provides the assessment of genomic resources of Cerasus but also paves the way for probing the metabolic and molecular mechanisms underlying the short-term waterlogging response in C. sachalinensis.

Highlights

  • Cerasus sachalinensis is widely used in cool regions as a sweet cherry rootstock and is known for its sensitivity to soil waterlogging and waterlogging stress

  • After 3 h, the basic respiration pathways changed from Embden-Meyerhof-Parnas (EMP)-tricarboxylic acid (TCA)-pentose phosphate pathway (PPP) to EMPPPP-TCA

  • The contribution rate of TCA was the lowest, ranging from 29.39%– 14.21%; the contribution rate of PPP increased by 12.54%, 9.54%, and 7.89% at 3 h, 6 h, and 24 h, respectively (Fig. 2)

Read more

Summary

Introduction

Cerasus sachalinensis is widely used in cool regions as a sweet cherry rootstock and is known for its sensitivity to soil waterlogging and waterlogging stress. Soils with high clay content and poor drainage can be waterlogged or flooded by inappropriate irrigation practices or heavy rains. Under these conditions, excess water saturates the rhizosphere, and the remaining oxygen is quickly consumed by plant roots and soil microorganisms, resulting in hypoxic conditions [1]. Schmidt) Kom. is native to northeastern China and northern Korea This species is widely used as a sweet cherry rootstock in cool regions such as Dalian and Qinhuangdao because of its high propagation rate, cold resistance, and adaptability [5]. One study demonstrated that C. sachalinensis rootstocks are sensitive to waterlogging [6]; the mechanism and responsive gene expression patterns, are not yet understood

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.