Abstract

A dual approach was employed to study beta-adrenergic receptor signal transduction in post ischemic (stunned) myocardium, examining physiological interventions in awake, chronically instrumented pigs and biochemical, cellular mechanisms in sarcolemmal preparations from the stunned hearts using the contralateral non-ischemic zone as a control. Ten min of coronary artery occlusion (CAO) and 30 min coronary artery reperfusion (CAR) resulted in depressed posterior wall-thickening (myocardial stunning). Isoproterenol increased transmural wall thickening more in stunned myocardium than in non-ischemic myocardium. In contrast, the responses of wall thickening to forskolin, actually decreased during stunning compared with control. NKH 477, a water soluble forskolin derivative, that does not activate cardiac nerves, increased wall thickening in non-ischemic tissue similarly to the effects on stunned myocardium. Increasing cardiac neural tone reflexly with inferior venal caval occlusion (IVCO) elicited similar results to forskolin, i.e., stunned myocardium responded with less of an increase in wall thickening as compared with non-ischemic myocardium. Beta-adrenergic receptor density, as determined with 125I-cyanopindolol binding, was significantly increased in stunned subendocardium and subepicardium compared with respective values in non-ischemic myocardium. There were no differences in the response of adenylyl cyclase to isoproterenol in stunned and non-ischemic myocardium. The enhanced responsiveness of the beta-adrenergic receptor to isoproterenol stimulation in stunned myocardium corresponded to the increase in beta-adrenergic receptor density. The combination of enhanced responses to isoproterenol, and decreased responses to forskolin and to IVCO and preserved responsiveness to NKH 477, suggest that stunned myocardium is characterized by transient sympathetic neural stunning. The enhanced sensitivity to beta-adrenergic receptor stimulation has important clinical implications, both in terms of therapy of stunned myocardium and detection of stunned and/or hibernating myocardium, i.e., low dose dobutamine echocardiography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.