Abstract

Most computational theories of cognition lack a representation of physiology. Understanding the cognitive effects of compounds present in the environment is important for explaining and predicting changes in cognition and behavior given exposure to toxins, pharmaceuticals, or the deprivation of critical compounds like oxygen. This research integrates physiologically based pharmacokinetic (PBPK) model predictions of caffeine concentrations in blood and tissues with ACT-R's fatigue module to predict the effects of caffeine on fatigue. Mapping between the PBPK model parameters and ACT-R model parameters is informed by the neurophysiological literature and established associations between ACT-R modules and brain regions. The results from three such parameter mappings are explored to explain observed data from sleep-deprived participants performing the psychomotor vigilance test with and without caffeine. Predicted caffeine concentrations in the brain are used to modulate procedural parameters in the fatigue module to explain caffeine's effects on multiple performance metrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.