Abstract
The Integrated Health Management (IHM) for the future aerospace systems requires to interface models of multiple subsystems in an efficient and accurate information environment at the earlier stages of system design. The complexity of modern aeronautic and aircraft systems (including e.g. the power distribution, flight control, solid and liquid motors) dictates employment of hybrid models and high-level reasoners for analysing mixed continuous and discrete information flow involving multiple modes of operation in uncertain environments, unknown state variables, heterogeneous software and hardware components. To provide the information link between key design/performance parameters and high-level reasoners we rely on development of multi-physics performance models, distributed sensors networks, and fault diagnostic and prognostic (FD&P) technologies in close collaboration with system designers. The main challenges of our research are related to the in-flight assessment of the structural stability, engine performance, and trajectory control. The main goal is to develop an intelligent IHM that not only enhances components and system reliability, but also provides a post-flight feedback helping to optimize design of the next generation of aerospace systems. Our efforts are concentrated on several directions of the research. One of the key components of our strategy is an innovative approach to the diagnostics/prognostics based on the real time dynamical inference (DI) technologies extended to encompass hybrid systems with hidden state trajectories. The major investments are into the multiphysics performance modelling that provides an access of the FD&P technologies to the main performance parameters of e.g. solid and liquid rocket motors and composite materials of the nozzle and case. Some of the recent results of our research are discussed in this chapter. We begin by introducing the problem of dynamical inference of stochastic nonlinear models and reviewing earlier results. Next, we present our analytical approach to the solution of this problem based on the path integral formulation. The resulting algorithm does not require an extensive global search for the model parameters, provides optimal compensation for the effects of dynamical noise, and is robust for a broad range of dynamical models. In the following Section the strengths of the algorithm are illustrated illustrated by inferring the parameters of the stochastic Lorenz system and comparing the results with those of earlier research. Next, we discuss a number of recent results in application to the development of the IHM for aerospace system. Firstly, we apply dynamical inference approach to a solution of classical three tank problems with mixed unknown continuous and binary parameters. The problem is considered in the context of ground support system for filling fuel tanks of liquid rocket motors. It is shown that the DI algorithm is well suited for successful solution of a hybrid version of this benchmark problem even in the presence of additional periodic and stochastic perturbation of unknown strength. Secondly, we illustrate our approach by its application to an analysis of the nozzle fault in a solid rocket motor (SRM). The internal ballistics of the SRM is modelled as a set of one-dimensional partial differential equations coupled to the dynamics of the propellant regression. In this example we are specifically focussed on the inference of discrete and continuous parameters of the nozzle blocking fault and on the possibility of an application of the DI algorithm to reducing the probability of misses of an on-board FD&P for SRM. In the next section re-contact problem caused by first stage/upper stage separation failure is discussed. The reaction forces imposed on the nozzle of the upper stage during the re-contact and their connection to the nozzle damage and to the thrust vector control (TVC) signal are obtained. It is shown that transient impact induced torquean be modelled as a response of an effective damped oscillator. A possible application of the DI algorithm to the inference of damage parameters and predicting fault dynamics ahead of time using the actuator signal is discussed. Finally, we formulate Bayesian inferential framework for development of the IHM system for in-flight structural health monitoring (SHM) of composite materials. We consider the signal generated by piezoelectric actuator mounted on composite structure generating elastic waves in it. The signal received by the sensor is than compared with the baseline signal. The possibility of damage inference is discussed in the context of development of the SHM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.