Abstract
Non-interferometric quantitative phase imaging based on Transport of Intensity Equation (TIE) has been widely used in bio-medical imaging. However, analytic TIE phase retrieval is prone to low-spatial frequency noise amplification, which is caused by the illposedness of inversion at the origin of the spectrum. There are also retrieval ambiguities resulting from the lack of sensitivity to the curl component of the Poynting vector occurring with strong absorption. Here, we establish a physics-informed neural network (PINN) to address these issues, by integrating the forward and inverse physics models into a cascaded deep neural network. We demonstrate that the proposed PINN is efficiently trained using a small set of sample data, enabling the conversion of noise-corrupted 2-shot TIE phase retrievals to high quality phase images under partially coherent LED illumination. The efficacy of the proposed approach is demonstrated by both simulation using a standard image database and experiment using human buccal epitehlial cells. In particular, high image quality (SSIM = 0.919) is achieved experimentally using a reduced size of labeled data (140 image pairs). We discuss the robustness of the proposed approach against insufficient training data, and demonstrate that the parallel architecture of PINN is efficient for transfer learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.