Abstract

Graphene, a single layer of carbon atoms forming a honeycomb lattice structure, has been considered a wonder material for both scientific research and technological applications. Structural distortions in nano-materials can induce dramatic changes in their electronic properties. In particular, strained graphene can result in both charging effects and pseudo-magnetic fields, so that controlled strain on a perfect graphene lattice can be tailored to yield desirable electronic properties. In the first part of this thesis (Chapter 2 to 5), we explore a new approach to manipulating the topological states in monolayer graphene via nanoscale strain engineering. By placing strain-free monolayer graphene on architected nanostructures to induce global inversion symmetry breaking, we demonstrate the development of giant pseudo-magnetic fields, global valley polarization, and periodic one-dimensional topological channels for protected propagation of chiral modes in strained graphene. We have also observed pseudo-magnetic field-induced quantum oscillations and valley Hall signals, including quantum valley Hall effect, by transport measurements at 1.8K. The second part of this thesis focuses on the development and applications of other graphene-based nanostructures. We report PECVD techniques for the synthesis of various graphene and graphene-based nanostructures, including horizontal growth of graphene sheets, vertical growth of graphene nanostructures such as graphene nanostripes with large aspect ratios, and direct and selective deposition of multi-layer graphene on nanostructured substrates. By properly controlling the gas environment of the plasma, it is found that no active heating is necessary for the PECVD growth processes and that high-yield growth can take place in a single step on a variety of surfaces, including metallic, semiconducting, and insulating materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.