Abstract

Electrospinning is a fiber manufacturing technique with the possibility of encapsulating high levels of small molecule drugs while providing controlled release rates. In this study, electrospun blend fibers were produced from polyethylene oxide (PEO) and ethyl cellulose (EC) at various compositions to encapsulate a poorly water-soluble drug of ibuprofen (IBP) at 30% loading. Microscopic evaluation showed smooth and defect-free fiber morphologies for blank and IBP-loaded PEO/EC fibers. The average fiber diameters and fiber yields suggested a potential optimization on the blend fiber composition for the electrospun drug-eluting PEO/EC fibers, where the highest average fiber diameter and fiber yield occurred at 50PEO/50EC fiber composition. Surface wettability studies demonstrated the effects on surface hydrophobicity from blend fibers of water-soluble PEO and hydrophobic EC as well as the incorporation of IBP. In addition, blend fibers containing more PEO promoted the water absorption rates through dissolution of the polymer matrix. Furthermore, results from mechanical testing of the blend fibers showed the highest fiber elastic modulus and tensile strength at fiber compositions in between 75PEO/25EC and 50PEO/50EC, corresponding to the average fiber diameter measurements. The in vitro IBP release rates demonstrated a dependence on the EC compositions supported by the surface wettability and water absorption rate studies. In general, our work demonstrated the ability to electrospin blank and IBP-loaded PEO/EC fibers with the scientific understandings of EC compositions on modulations of fiber physicomechanical properties and in vitro drug release rates. The findings from the work indicated the potential engineering and pharmaceutical applications of electrospun drug-eluting fibers for topical drug delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.