Abstract

AbstractHomologues long‐chain chrysin derivatives (LCD, C n: 8–18) were synthesized and incorporated into nanostructured lipid carriers (NLC) with the aim to treat human neuroblastoma. Mutual miscibility and attractive interactions among the NLC components, namely tripalmitin (TP), cetyl palmitate (CP), oleic acid (OA), and the chrysin (CHR) derivatives (LCD) at the air–water interface were assessed by the Langmuir monolayer approach. Optimum combination for the NLC formulations was found to be 2:2:1 (M/M/M) for TP/CP/OA, respectively. NLC formulations, both in the absence and presence of LCD, were characterized by combined dynamic light scattering, electron microscopy, atomic force microscopy, and differential scanning calorimetry. The size and zeta potential of the NLC formulations were found in the range 200–350 nm and −12 to −18 mV, respectively. Encapsulation efficiency and release kinetics of CHR and LCD when loaded into NLC were also evaluated. LCD exhibited maximum incorporation, drug‐loading capacity, and sustained release because of its enhanced hydrophobicity. Superior incorporation efficiency and sustained‐release profile of LCD were able to enhance their anticancer activity against human neuroblastoma cell lines, compared to CHR, making them promising agents in combating cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.