Abstract

Physicochemical and acid gelation properties of UHT-treated commercial soy, oat, quinoa, rice and lactose-free bovine milks were studied. The separation profiles were determined using a LUMiSizer dispersion analyser. Soy, rice and quinoa milks formed both cream and sediment layers, while oat milk sedimented but did not cream. Bovine milk was very stable to separation while all plant milks separated at varying rates; rice and oat milks being the most unstable products. Particle sizes in plant-based milk substitutes, expressed as volume mean diameters (d4.3), ranged from 0.55μm (soy) to 2.08μm (quinoa) while the average size in bovine milk was 0.52μm. Particles of plant-based milk substitutes were significantly more polydisperse compared to those of bovine milk. Upon acidification with glucono-δ-lactone (GDL), bovine, soy and quinoa milks formed structured gels with maximum storage moduli of 262, 187 and 105Pa, respectively while oat and rice milks did not gel. In addition to soy products currently on the market, quinoa may have potential in dairy-type food applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.