Abstract

Nanoparticles represent promising carriers for controlled drug delivery. Particle size and size distribution of the particles are important parameters for the in vivo behaviour after intravenous injection and have to be characterised precisely. In the present study, the influence of lyophilisation on the storage stability of poly( d, l lactic-co-glycolic acid) (PLGA) nanoparticles, formulated with several cryoprotective agents, was evaluated. Nanoparticles were prepared by a high pressure solvent evaporation method and freeze-dried in the presence of 1%, 2%, and 3% (m/v) sucrose, trehalose, and mannitol, respectively. Additionally, to all samples containing 3% of the excipients, l-arginine hydrochloride was added in concentrations of 2.1% or 8.4% (m/V). Dynamic light scattering (DLS), analytical ultracentrifugation and transmission electron microscopy (TEM) were used for particle characterisation before and after freeze-drying and subsequent reconstitution. In addition, glass transition temperatures were determined by differential scanning calorimetry (DSC), and the residual moisture of the lyophilisates was analysed by Karl Fischer titration. It was demonstrated that 1% sucrose or 2% trehalose were suitable to maintain particle integrity after reconstitution of lyophilised PLGA nanoparticles. The storage stability study over 3 months showed notable changes in mean particle size, size distribution, and residual moisture content, depending on the composition of the formulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.