Abstract

Three-level quantum systems, which possess some unique characteristics beyond two-level ones, such as electromagnetically induced transparency, coherent trapping, and Raman scatting, play important roles in solid-state quantum information processing. Here, we introduce an approach to implement the physically feasible three-level transitionless quantum driving with multiple Schr\"{o}dinger dynamics (MSDs). It can be used to control accurately population transfer and entanglement generation for three-level quantum systems in a nonadiabatic way. Moreover, we propose an experimentally realizable hybrid architecture, based on two nitrogen-vacancy-center ensembles coupled to a transmission line resonator, to realize our transitionless scheme which requires fewer physical resources and simple procedures, and it is more robust against environmental noises and control parameter variations than conventional adiabatic passage techniques. All these features inspire the further application of MSDs on robust quantum information processing in experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.