Abstract

Abstract. Motivated by the concept of “location uncertainty”, initially introduced in Mémin (2014), a scheme is sought to perturb the “location” of a state variable at every forecast time step. Further considering Brenier's theorem (Brenier, 1991), asserting that the difference of two positive density fields on the same domain can be represented by a transportation map, we demonstrate that the perturbations consistently define a stochastic partial differential equation (SPDE) from the original PDE. It ensues that certain quantities, up to the user, are conserved at every time step. Remarkably, derivations following both the SALT (stochastic advection by Lie transport; Holm, 2015) and LU (location uncertainty; Mémin, 2014; Resseguier et al., 2017a) settings can be recovered from this perturbation scheme. Still, it offers broader applicability since it does not explicitly rely on Lagrangian mechanics or Newton's laws of force. For illustration, a stochastic version of the thermal shallow water equation is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.