Abstract

In this paper, a homogeneous, green analogs ionic liquid containing choline chloride and nickel chloride hexahydrate is formed. The structure of the analogs ionic liquid is preliminary investigated by Fourier transform infrared spectroscopy. It is shown that the nickel chloride hexahydrate bond via hydrogen bonds with choline chloride and urea. The physico-chemical properties of the analogs ionic liquid such as viscosity, conductivity, density, and thermal stability are measured as a function of temperature and composition. The thermal expansion coefficients (r), the molar Gibbs energy of activation (ΔG*) for viscous flow, the molar enthalpy of activation (ΔH*), and the molar entropy of activation (ΔS*) for viscous flow have been calculated. A straight-line equation is used to fit the density data while the Arrhenius equation is used to fit both viscosity and conductivity. Thermal stability of analogs ionic liquid was carried out from room temperature to 973.15 K. It indicates that analogs ionic liquid is stable from room temperature to 488.2 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.