Abstract

OBJECTIVESWe sought to determine whether the benefit of training for vasodilation in the skeletal muscle vasculature of patients with chronic heart failure (CHF) is likely to be caused at the molecular level primarily by increased nitric oxide (NO) production or decreased inactivation of NO.BACKGROUNDPhysical training reverses endothelium dysfunction in patients with CHF, mediated by increased NO bioactivity. Some animal studies support a mechanism whereby training results in increased vascular NO levels by sustained transcriptional activation of the endothelial NO synthase (eNOS) gene, presumably due to shear stress. The mechanism has not been addressed in patients with CHF.METHODSThe steady state transcript levels for eNOS and two other shear stress regulated genes (angiotensin-converting enzyme [ACE] and prostacyclin synthase [PGI2S]) were measured in samples of skeletal muscle from patients with CHF before and after 12 weeks of training. Transcript levels were measured in the same samples for two genes encoding antioxidant enzymes, copper zinc superoxide dismutase (Cu/Zn SOD) and glutathione peroxidase (GSH-Px). Untrained patients served as controls.RESULTSAs expected, training significantly enhanced peak oxygen uptake in the patients with CHF. Training did not increase steady-state transcript levels for eNOS, ACE or PGI2S. In striking contrast, training increased the expression of the antioxidative enzyme genes by approximately 100%.CONCLUSIONSOur results do not support a model of benefit from training by increased eNOS expression. However, the data are entirely consistent with the alternative hypothesis, that reduced oxidative stress may account for the increase in vascular NO-mediated vasodilation. Insight into the mechanism may be relevant when considering therapies for exercise-intolerant patients with CHF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.