Abstract
The aim of this paper was to evaluate physical stability of solid dispersions in respect to the drug, tadalafil (Td), in vinylpyrrolidone and vinyl acetate block copolymer (PVP-VA). Nine solid dispersions of Td in PVP-VA (Td/PVP-VA) varied in terms of quantitative composition (1:9–9:1, w/w) were successfully produced by spray-drying. Their amorphous nature, supersaturated character and molecular level of mixing (a solid solution structure) were subsequently confirmed using DSC, PXRD, SEM and calculation of Hansen total solubility parameters. Due to thermal degradation of both components before the melting point of Td (302.3°C), an approach based on the drug crystallization from the supersaturated solid dispersion was selected to calculate the solubility of Td in the polymer. Annealing of the Td/PVP-VA solid dispersion (1:1, w/w) at selected temperatures above its Tg resulted in different stable solid dispersions. According to the Gordon–Taylor equation their new Tgs gave the information about the quantitative composition which corresponded to the thermodynamic solubility of Td in PVP-VA at given temperatures of annealing. The obtained relationship was fitted to the exponential function, with the calculated solubility of Td of 20.5% at 25°C. This value was in accordance with the results of hot stage polarizing light microscopy as well as stability tests carried out at 80°C and 0% RH, in which Td solid dispersions containing 10–20% of the drug were the only systems that did not crystallize within two months. A thermal analysis protocol utilizing a fast heating rate was shown to generate Td solubility data complementing the solid dispersion method. The Flory–Huggins model applied for the Td/PVP-VA system yielded the solubility value of 0.1% at 25°C, showing the lack of applicability in this case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Pharmaceutics and Biopharmaceutics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.