Abstract

Methanol crosslinking and heat-treatment methods for physical crosslinking of electrospun poly(vinyl alcohol) (PVA) nanofibres were investigated to assess their stability in water. For this purpose, PVAs with low and high molecular weights were selected. Morphology of the crosslinked membranes was characterised by scanning electron microscopy. Crystallinity of the resultant crosslinked fibres were analysed by FT-IR and differential scanning calorimetry. It has been shown that physical crosslinking increases the crystallinity of the fibres. High molecular weight PVA nanofibres showed better stability and better preservation of nanofibrous structure. Stability of the crosslinked membranes was also tested by immersion into water at room temperature and boiling water. Combined methanol and heat treatments at different temperatures and exposure periods were also investigated. Treatment at 180 °C HMW PVA nanofibres for longer durations exhibited best results in terms of water stability, although it exhibited somewhat lower swelling ratios as compared to those subjected to only methanol treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.