Abstract
AbstractZircon‐filled poly(methyl methacrylate) (PMMA) composites were synthesized, and their physical properties after ambient heat treatments were investigated. The sub‐micron zircon filler was obtained by purifying local zircon sand. The heat treatments were at 25°C (untreated), 55°C, and 70°C, around the glass transition temperature of PMMA. The crystal and molecular structures of the samples were investigated using X‐ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The thermomechanical, optical, and thermal (between RT and 550°C) properties of all composites were examined using dynamic mechanical analysis (DMA), UV–Vis spectroscopy, and differential thermal/thermogravimetric analysis (DT/TGA) instruments. XRD patterns showed that there were no crystal structure changes. FTIR peaks were reduced due to the heat treatment indicating the presence of PMMA molecular degradation in the heat‐treated samples. Meanwhile, DMA data showed that the heat‐treated samples exhibit a much lower room temperature storage modulus, that is, up to half as compared to the untreated ones. Furthermore, the heat treatment also affects the optical properties, including a slight drop of transmittance in UV‐A and visible regions but a slight increase of transmittance in UV‐B and UV‐C regions. Finally, the differential scanning calorimetry/thermogravimetry (DSC/TG) data show that the heat‐treated pure PMMAs become more challenging to undergo thermal degradation (i.e., mass drop).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.