Abstract

AbstractPhysical modelling has been developed in order to simulate the effects of periglacial erosion processes on the degradation of slopes and scarps. Data from 41 experimental freeze–thaw cycles are presented. They attest to the efficiency of periglacial processes that control both erosion and changes in scarp morphology: (i) cryoexpulsion leads to an increase of scarp surface roughness and modifies significantly the internal structure of the active layer; (ii) combined effects of frost creep and gelifluction lead to slow and gradual downslope displacements of the active layer (0·3 cm/cycle); (iii) debris flows are associated with the most significant changes in scarp morphology and are responsible for the highest rate of scarp erosion; (iv) quantification of the erosion rate gives values close to 1 cm3 cm−2 for 41 freeze–thaw cycles. These experimental results are consistent with field data acquired along the La Hague fault scarp (Normandy, France) where an erosion rate of 4·6 ± 1 m3 m−2 per glacial stage has been computed from the volume of natural slope deposits stored during the Weichselian glacial stage. These results show that moist periglacial erosion processes could lead to an underestimation of Plio‐Quaternary deformation in the mid‐latitudes. Copyright © 2006 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.