Abstract

As emerging technologies continue to require diverse materials capable of exhibiting tunable stimuli-responsiveness, shape-memory materials are of considerable significance because they can change size and/or shape in controllable fashion upon environmental stimulation. Of particular interest, shape-memory polymers (SMPs) have secured a central role in the ongoing development of relatively lightweight and remotely deployable devices that can be further designed with specific surface properties. In the case of thermally-activated SMPs, two functional chemical species must be present to provide (i) an elastic network capable of restoring the SMP to a previous strain state and (ii) switching elements that either lock-in or release a temporary strain at a well-defined thermal transition. While these species are chemically combined into a single macromolecule in most commercially available SMPs, this work establishes that, even though they are physically separated across one or more polymer/polymer interfaces, their shape-memory properties are retained in melt-spun bicomponent fibers. In the present study, we investigate the effects of fiber composition and cross-sectional geometry on both conventional and cold-draw shape memory, and report surprisingly high levels of strain fixity and recovery that generally improve upon strain cycling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.