Abstract

This paper investigates the numerical accuracy of implicit Large Eddy Simulations (iLES) in relation to compressible turbulent boundary layers (TBL). iLES are conducted in conjunction with Monotonic Upstream-Centred Scheme for Conservation Laws (MUSCL) and Weighted Essentially Non-Oscillatory (WENO), ranging from 2nd to 9th-order. The accuracy effects are presented from a physical perspective showing skewness, flatness and anisotropy calculations, among others. The order of the scheme directly affects the physical representation of the TBL, especially the degree of asymmetry and anisotropy in the sub-layers of the TBL. The study concludes that high-order iLES can provide an accurate and detailed description of TBL directly comparable to available DNS and experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.