Abstract

An experimental study (physical modeling) of the processes of austenite microstructure evolution occurring under hot rolling was performed for line-pipe steels with different chemical composition. All investigations were conducted with the help of the Gleeble 3800 system. Empirical quantitative models of austenite grain growth, static and dynamic recrystallization, as well as a flow stress model were developed. The effect of complex alloying by such elements as C; Mn; Si; Ni; Mo; Nb; Ti; and V on grain growth and recrystallization is accounted for under the condition that all elements are in a solid solution. The set of the models empirical parameters is determined utilizing corresponding experimental data available from literature. Modeling results for static recrystallization and flow stress in the investigated steels are compared with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.