Abstract

We have used electron microscopy and model calculations to analyze the physical basis of light-scattering signals from suspensions of photoreceptor membranes. These signals have previously been used to probe interactions between photoactivated rhodopsin (R*) and the peripheral membrane enzyme, GTP-binding protein (G) (Kühn et al., 1981, Proc. Natl. Acad. Sci. USA., 78:6873-6877). Although there is no unique physical interpretation of these signals, we have shown in this study that they were qualitatively unchanged when the rod outer segment fragments (containing stacked disks) were fragmented by sonication or osmotic shock to produce spherical disk membrane vesicles. An exact treatment of the scattering process for spherical vesicles enabled us to evaluate the effects of changing membrane thickness, refractive index, or vesicle diameter. We present a particular redistribution of mass upon R*-G interaction that fits the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.