Abstract

Plant surfaces are a favourable niche for bacterial establishment, and hypothetically, plant species differ in their capacity to harbour epiphytic bacterial communities. This study was conducted to evaluate and describe the structural relationship of a bacterial community at the phyllosphere level with different plant species in a tropical ecosystem. Leaf blades of 47 plant species distributed in 27 botanical families were collected on a typical small Brazilian farm and prepared for observation under light and scanning electron microscopy. Naturally occurring bacteria were the most abundant settlers of the phylloplane, followed by fungal spore or hyphae. All plant species studied were colonized by phylloepiphytic bacteria, which were observed as solitary cells, microcolonies, and biofilms. However, independent of the family, the plant species differed in the pattern of phyllosphere colonization, as reflected in bacteria frequency and presence or absence of anatomical features that would favour the association. The phylloepiphytic bacteria were preferentially established on the following sites: epidermal cell wall junctions, glandular and nonglandular trichomes, veins, stomata, and epidermal cell wall surface. Profuse bacteria and fungi colonization was observed, at a level that was at least comparable with temperate regions. Interestingly, fungi seemed to alter the bacteria colonization pattern, most probably by microenvironmental modifications. The trichome type and density as well as the presence of epicuticular wax on the leaf blade surface seemed to be the most determinant anatomical features for the pattern of phyllosphere colonization. The presence of trichomes has a favourable, and epicuticular wax an unfavourable influence on the plant-bacteria interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.