Abstract

In this study, 2 (3), 9 (10), 16 (17), 23 (24)-tetrakis-(8-quinoline-oxy) phthalocyanine zinc(II) (ZnQPc) was prepared and then quaternized to obtain water soluble zinc phthalocyanine (ZnQPc4+). Then, ZnQPc4+ was used as a photosensitizer for a series of POM catalysts, including Dawson type K6[α-P2W18O62]·14H2O (P2W18) and K10[α-P2W17O61]·20H2O (P2W17) and Keggine type H3PW12O40·xH2O (PW12). The Keggin type PW12 showed higher efficiency with 18.2μmol of H2 evolution (turnover number (TON) = 14,550) for 6h upon ZnQPc4+ sensitization in relation to two Dawson P2W17 and P2W18 in a visible light-driven water-soluble system with isopropanol and H2PtCl6·6H2O. In addition, the complexes of ZnQPc4+ with a series of POM catalysts (P2W17, P2W18, and PW12) were also used as photocatalysts for the degradation of methylene blue (MB) in water, and it was found that the complexes of ZnQPc4+ with P2W17 and PW12 showed improved photocatalytic activity, and the degradation rates of MB reached 100% at a small dosage under natural pH and visible light. The high efficacy of POM catalysts for H2 evolution and the degradation of MB were attributed to the sensitization of POMs by ZnQPc4+, which was enabled by the transfer of photogenerated electrons of ZnQPc4+ to the lowest unoccupied molecular orbital (LUMO) of POM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.