Abstract

Self-organization of molecules in solution is an important natural and synthetic process, in particular for the preparation of nanomaterials. However, the mechanism of growth for solution-based nanoparticle formation is not always well understood. We present results that clarify these mechanisms in solutions of magnesium phthalocyanine in which the self-organization is induced by addition of a miscible nonsolvent. From simultaneous measurements of the sizes of the growing nanoparticles by photon correlation spectroscopy and the molecular concentration by absorption and fluorescence spectroscopy, we have found that the particles do not grow by molecular diffusion to the surfaces. These results suggest the importance of unstable clusters in the growth process. We also observed a strong dependence of the particle size on the initial concentration which we attribute to effects of the curvature of the solubility curve.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.