Abstract

The peculiar nature of light-matter interaction in atomically thin transition metal dichalcogenides is recently under examination for application in novel optoelectronic devices. Here, we show that heterostructures composed of two or more such layers can be used for solar energy harvesting. The strong absorption in these atomically thin layers makes it possible to achieve an efficient power conversion with a minimal amount of active material. We describe in detail two different fabrication techniques that allow to realize heterostructures with clean, atomically sharp interfaces. The observed electrical and photovoltaic properties are analyzed. Our findings suggest that, accompanied by the advances in large area fabrication of atomically thin transition metal dichalcogenides, van der Waals heterostructures are promising candidates for a new generation of excitonic solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.