Abstract

Among the various approaches, ZnS treatment is the most convenient method for reducing the charge recombination in quantum dot-sensitized solar cells (QDSSCs). Here an improved method of ZnS treatment is explained for efficiency enhancement in QDSSCs. To get to the goal of device performance improvement, it is essential to have a uniform deposited layer. We utilized Triton X-100 (TX-100) as a surfactant to the convenient aqueous precursors during ZnS deposition by successive ionic layer adsorption and reaction method. It helps to decrease in contact angle and increase in wettability of the aqueous precursor and results in a more uniform deposited layer. The effect of modified ZnS treatment on the charge transport properties of the cells is investigated by voltage decay measurement and impedance spectroscopy methods. Our results show that increasing recombination resistance is one of the most important roles of ZnS treatment. This study indicates that ZnS deposition from low surface tension precursors can be systematically used in QDSSCs to enhance the performance of the cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.