Abstract
The nine papers in this special section focus on photovoltaic module and sub-module level power electronics. Grid connected photovoltaic energy systems have experienced an explosive growth over the last decade, with a cumulative installed capacity surpassing the 400 GW milestone as of 2017. Among PV system configurations, distributed module-level converter architectures can lead to a higher energy yield by mitigating partial shading, persistent shading (soiling, snow, bird droppings, and fallen leaves), mismatch, and aging, through a higher maximum power point tracking (MPPT) efficiency. Also, distributed electronics might be the key for implementing diagnostic and prognostic actions at a module level. Among these configurations, microinverters (also known as ac-module inverter), which connect a single PV module to the grid, and PV power optimizers, which are dc–dc converters performing the MPPT function at a module level, have attracted the academic and industrial interest in the last decade. So much so, that both microinverters and dc–dc power optimizers are commercialized by tens of companies around the world, with a great variety of circuit topologies, which comprise combinations of one or more power stages, interleaved converters, resonant converters, topologies with and without isolation, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.