Abstract
Bioconjugate gold-based nanostructures combining the plasmonic photothermal effect with photothermal-triggered DNA delivery are appealing materials for medical diagnostic and therapy for cell-based disease. In this study, we demonstrate the use of surface hybridization to prepare DNA-modified gold nanorods to be used as photo-delivery system for single stranded oligonucleotides. The as prepared DNA modified gold nanorods have strong absorption bands in the visible and near-infrared regions in which the absorbed light through photothermal effect, induces a surface temperature increasing up to the melting temperature with consequent DNA release. No evident DNA release was observed below the melting temperature.The experimental data were supported by molecular dynamic simulation investigation, showing the kinetics aspect of dsDNA de-hybridization at gold nanorods surface at temperature below (298 K) and above (333 K) the melting temperature of sequence investigated. We demonstrate that the cationic charges of surfactant, localized at nanorods surface, induce a remarkable de-hybridization of strands DNA, as confirmed by an increasing of hybridization enthalpy value of about 7 kcal/mol and by a faster de-hybridization process, respect the model of gold nanorods without positive charges. These data were corroborated by the increasing of the root mean square deviation value (about 4.4 Å, calculated at 333 K) indicating that the presence of cationic headgroup at gold surface induce separation of the double strand.This finding data paving the way for the development of nanostructured material for photothermal-triggered delivery systems of DNA for gene therapy application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.