Abstract

The in vivo capabilities of a new, integrated optical system for studying lymph and blood flow were explored, including imaging of moving red and white blood cells. This system combined transmission microscopy with different dual-beam photothermal (PT) techniques, such as PT imaging, PT thermolens method, and PT deflection velocimetry. All of these PT techniques are based on irradiation of rat mesenteric microvessels with a short laser pulse and on detection of temperature-dependent variations of the refractive index with a second, probe laser beam. In general, the concept of in vivo PT flow cytometry was developed, with a focus on real-time monitoring of moving blood cells in their natural states without labeling (e.g., fluorescent), including obtaining PT images of the cells and determining their flow velocity and response to different interventions. Preliminary experiments revealed many potential applications of this integrated system: (1) quantitation of lymph and blood flow without probes; (2) imaging of moving red and white blood cells; (3) visualization and tracking of PT nanoprobes and sensitizers; (4) comparison of laser-tissue interactions in vivo and in vitro, especially optimization of laser treatment of vascular lesions (port-wine stains, lymphatic malformations, etc.); and (5) determination of the link between in vitro and in vivo cytotoxicity studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.