Abstract

Land plants shorten their vegetation period during water deficiency. Under water stress, wheat plants undergo several changes at the morphophysiological level. We tried to elucidate the role of the morphophysiological parameters and the photosynthetic machinery in response to drought followed by rewatering. Therefore, some morphophysiological traits of two bread wheat genotypes (drought-tolerant Gobustan, drought-sensitive Tale 38) were studied. The H2O2 content increased under drought in both genotypes but recovered in the Gobustan genotype after rewatering. The isozymes of peroxidase manifested dynamic changes under drought. The electron transport rate and the maximum photochemical quantum efficiency of PSII showed similar responses to drought with subsequent rewatering in both genotypes. However, the amount of the photosynthetic pigments changed drastically resulting in structural changes of thylakoid membranes. In Gobustan, the thylakoid membrane structure almost completely recovered after rewatering. Thus, the drought-tolerant genotype shows a more dynamic response of photosynthetic machinery and antioxidant capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.