Abstract

Low photosynthetic active radiation is a strong determinant in the development and growth of sea ice algae. The algae appear to have universal mechanisms to overcome light limitation. One important process, which is induced under light limitation, is the desaturation of chloroplast membrane lipids. In order to discover whether this process is universally valid in sea ice diatoms, we investigated three species coexisting in chemostats illuminated with 15 and 2 μmol photons m −2 s −1 at −1 °C. Growth under 2 μmol photons m −2 s −1 caused a 50% increase in monogalactosyldiacylglycerols (MGDG) thylakoid membrane related 20:5 n-3 fatty acids. This fatty acid supports the fluidity of the thylakoid membrane and therefore the velocity of electron flow, which is indicated by increasing rate constants for the electron transport between Q A (first stable electron acceptor) and bound Q B (second stable electron acceptor) (11.16±1.34 to 23.24±1.35 relative units). Two μmol photons m −2 s −1 furthermore resulted in higher amounts of non-lipid bilayer forming MGDG in relation to other bilayer forming lipids, especially digalactosydiacylglycerol (DGDG). The ratio of MGDG:DGDG increased from 3.4±0.3 to 5.7±0.3. The existence of bilayer thylakoid membranes with high proportions of non. bilayer forming lipids is only possible when sufficient thylakoid pigment–protein complexes are present. If more thylakoid pigment–protein complexes are present in membranes, as found under extreme light limitation, less bilayer forming lipids such as DGDG are required to stabilize the bilayer structure. Differences in protein contents between both light intensities were not found. Consequently pigment contents which nearly doubled under 2 μmol photons m −2 s −1 must be responsible in balancing the potential stability loss resulting from an increase in MGDG:DGDG ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.