Abstract

We have investigated the influence of mechanical wounding of Arabidopsis rosette leaves on photochemical activity of photosystem II, gas exchange, sugar content and sucrose metabolism in wild-type plants and mutants impaired in hormonal balance. The aos (jasmonate deficiency), rcd1 (reduced sensitivity to ABA, ethylene, and methyl-jasmonate), and ein4 (ethylene insensitivity) mutants have been used. Generally, mechanical injury led to dynamic changes in metabolism, especially in sugar and carotenoid contents. Whereas all mutants showed lower photosynthesis and respiration in comparison to the wild-type plants, leaf wounding caused a decrease in respiration in aos and ein4, and an increase in respiration in wild type. The mechanical injury triggered an increase of the activities of sucrose hydrolysing enzymes, such as sucrose synthase (SuSy) and several types of invertases, which was most evident in case of rcd1 and aos plants. This was correlated with injury-related changes in soluble sugars in the mutants, but not in wild-type plants where sugar content was not significantly affected by wounding. The results confirm the key role of stress hormones, such as jasmonate and ethylene, in mediating stress responses after wounding. The outcome of the experiments also underlines important roles of SuSy and invertase in regeneration of injured tissues, most probably by providing precursors for cell wall biosynthesis and by modulating sugar-signalling in plant cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.