Abstract
The understanding and manipulation of the point defect structure in oxide glasses have been critical to the enhanced performance and reliability of optical-fiber-based, photosensitive photonic devices that currently find widespread application in telecommunications and remote sensing technologies. We provide a brief review of past research investigating photosensitive mechanisms in germanosilicate glasses, the primary material system used in telecommunications fibers. This discussion motivates an overview of ongoing work within our laboratories to migrate photosensitive glass technologies to a planar format for integrated photonic applications. Using reactive-atmosphere, RF-magnetron sputtering, we have demonstrated control of glass defect structure during synthesis, thereby controlling both the material photosensitivity (i.e., dispersion and magnitude of the refractive index change) and its environmental stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.