Abstract

In this work, we report a novel method of mask-less doping of graphene channel in field-effect transistor configuration by local inkjet printing of organic semiconducting molecules. Graphene-based transistor was fabricated via large-scale technology, allowing for upscaling electronic device fabrication and lowering the device cost. The altering of functionalization of graphene was performed through local inkjet printing of semiconducting molecules: N,N′-Dihexyl- 3,4,9,10-perylenedicarboximide (PDI-C6), 5,5′′′-Dihexyl-2,2′:5′,2′′:5′′,2′′′-quaterthiophene (HEX-4T-HEX) and polyalanine (PANI). We found the effect of UV treatment on fabrication of graphene/organic junctions because of change in graphene hydrophobic properties. We demonstrated the high resolution (about 50 μm) and accurate printing of organic ink on UV treated chemical vapor deposited (CVD) graphene. The PANI/graphene junction demonstrate more stable photoresponse characteristic for 470 nm diode illumination. The characteristics of PDI/graphene junction demonstrate the saturation for high diode power because of organic crystals degradation. The photoresponse of 1 mA/W was demonstrated for PANI/graphene junction at 0.3 V bias voltage. The developed method opens the way for local functionalization of on-chip array of graphene by inkjet printing of different semiconducting organic molecules for photonics and electronics application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.