Abstract

Most piezoelectric materials are not interactive with visible light, meaning that their band gaps are beyond the photon energies of the visible part of the light spectrum. The first narrow band gap (1.1 eV, the same as silicon) ferroelectric material based on the oxide perovskite structure has been achieved by doping Ni on the B-sites of KNbO3 and paring the Ni2+ ions with oxygen vacancies to form defect dipoles to ease the band-band transition. This band gap engineered ferroelectric material has also been proved to be piezoelectric. The Ni-doping strategy for band gap engineering has been successfully applied to other perovskite compositions. As a result, several materials with simultaneously good piezoelectricity and a visible-range band gap have been developed. Such photoresponsive piezoelectrics have potential applications in opto-electrical dual-source actuators, single-material multi-sensors and multi-source energy harvesters. This mini review focuses on the works of simultaneous tuning of piezoelectricity and band gap, which have not previously been discussed as an individual topic in existing reviews. Pioneer works on the applications of photoresponsive piezoelectrics are also presented. Since most of such materials are built on the frame of lead-free perovskite oxides, their band gap (without degrading the piezoelectricity) provides an additional benefit to environmentally friendly lead-free piezoelectrics (compared to lead-based counterparts such as PZT [Pb(Zr,Ti)O3)]. This review aims to draw the attention of piezoelectric scientists and device engineers, so that potential applications of photoresponsive piezoelectrics can be comprehensively investigated, as well as more material options that can be offered in future works.

Highlights

  • Since the first discovery of the piezoelectric effect by the Curie brothers in 1880, studies on piezoelectric materials have rapidly advanced both fundamentally and in applications such as ultrasonic transducers, high-precision actuators, highly sensitive acceleration sensors and highefficiency/miniaturized kinetic energy harvesters (Uchino, 2015)

  • The only strategy that has been preliminarily proven to work on the tuning of band gaps of piezoelectrics with an oxide perovskite structure, is the introduction of Ni2+ ions into the B site associated with oxygen vacancies

  • Bai et al for the first time successfully measured ferroelectricity and piezoelectricity (d33 ≈ 23 pC/N) at room temperature for ceramics of KN doped with 10 mol % BNNO with a band gap of about 1.5 eV, through improvement of sample quality (Bai et al, 2017a)

Read more

Summary

Yang Bai *

Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland. Specialty section: This article was submitted to Ceramics and Glass, a section of the journal

Frontiers in Materials
INTRODUCTION
WIDE BAND GAP PIEZOELECTRICS
NARROW BAND GAP PIEZOELECTRICS
Band Gap Engineering Strategy
Piezoelectric Halide Perovskites
APPLICATIONS OF NARROW BAND GAP PIEZOELECTRICS
Findings
CONCLUSION AND PERSPECTIVES
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.