Abstract

Platelet-derived growth factor (PDGF) is necessary for the normal development of the retinal vasculature and its overexpression is likely to contribute to proliferative retinal disorders, such as proliferative vitreoretinopathy. Transgenic mice that overexpress PDGF-B in the photoreceptors (rho/PDGF-B mice) develop traction retinal detachment. In the present study, a detailed histopathological analysis was performed in rho/PDGF-B mice. In these transgenic mice, endothelial cells, pericytes, and glial cells begin to proliferate at postnatal day 7 (P7). All three cell types increase in numbers, forming a highly vascularized cell mass, which reaches a maximum thickness at P14. Cords of endothelial cells and glia invade the retina and exert traction, generating retinal folds; however, the deep capillary bed never forms. Griffonia simplicifolia isolectin B4 (GSA)-positive endothelial cells form tubes and penetrate the retina to the level of the outer plexiform layer, but they never interconnect to form the deep capillary bed. The vessels within the cell mass are patent, but have a very immature morphology. They often are thin-walled with fenestrations. Pericytes and glial cells are usually found in clusters and are not associated with the abnormal vessels. The lack of this association may account for the failure to form a mature vasculature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.