Abstract

It was clarified that a thin composite film of a liquid crystal (LC) and polymer fiber networks can be obtained through two phase separation processes: spinodal decomposition, and nucleation and growth. The phase separation phenomenon was observed using a polarizing microscope under ultraviolet irradiation. Results showed that spinodal decomposition initially occurred in the LC/polymer solution under photopolymerization of a monomer. The polymer fibers were then grown on a surface of solid materials (such as substrates and spacer particles) by the nucleation and growth process in the polymer-rich solution induced by the spinodal decomposition. It was found that the spatially noncyclic morphology of the polymer fibers dispersed in the LC was obtained by the intervention of the nucleation and growth process after the spinodal decomposition process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.