Abstract
We present an optomechanical switching device (OSD) for a photopolarimetric lidar system with differential-absorption Mueller matrix spectroscopy standoff detection method. An output train of alternate continuous-wave CO2 laser beams [...L1:L2...] is directed onto suspect chemical-biological (CB) aerosol plume or the land mass it contaminates (S) vis-à-vis the OSD, where L1 [L2] is tuned on [detuned off] a resonant molecular absorption moiety of CB analyte. Moreover, both incident beams and their backscattered radiances, from S, are polarization-modulated synchronously so as to produce gated temporal voltage waveforms called scattergrams recorded on focus at the receiver end of polarization lidar sensor system. All 16 elements of the Mueller matrix (Mij) of S are measured via digital or analog filtration of constituent frequency components in these running scattergram data streams (phase-sensitive detection). A collective set of normalized differential elements {Mi,j} (ratioed to element M11) that are susceptible to the analyte, probed on-then-off its molecular absorption band, form a unique detection domain that is scrutinized. Any mapping onto this domain in Mueller-space, from incoming sensor scattergram data sets preprocessed by algorithm and forwarded through a trained neural network pattern recognition system, cues a standoff detection event.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.