Abstract

Retinal vein pulsation properties are altered by glaucoma, intracranial pressure (ICP) changes, and retinal venous occlusion, but measurements are limited to threshold measures or manual observation from video frames. We developed an objective retinal vessel pulsation measurement technique, assessed its repeatability, and used it to determine the phase relations between retinal arteries and veins. Twenty-three eyes of 20 glaucoma patients had video photograph recordings from their optic nerve and peripapillary retina. A modified photoplethysmographic system using video recordings taken through an ophthalmodynamometer and timed to the cardiac cycle was used. Aligned video frames of vessel segments were analyzed for blood column light absorbance, and waveform analysis was applied. Coefficient of variation (COV) was calculated from data series using recordings taken within ±1 unit ophthalmodynamometric force of each other. The time in cardiac cycles and seconds of the peak (dilation) and trough (constriction) points of the retinal arterial and vein pulse waveforms were measured. Mean vein peak time COV was 3.4%, and arterial peak time COV was 4.4%. Lower vein peak occurred at 0.044 cardiac cycles (0.040 seconds) after the arterial peak (P = 0.0001), with upper vein peak an insignificant 0.019 cardiac cycles later. No difference in COV for any parameter was found between upper or lower hemiveins. Mean vein amplitude COV was 12.6%, and mean downslope COV was 17.7%. This technique demonstrates a small retinal venous phase lag behind arterial pulse. It is objective and applicable to any eye with clear ocular media and has moderate to high reproducibility. ( http://www.anzctr.org.au number, ACTRN12608000274370.).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.