Abstract
Achieving nanoscale spatial and electronic control over the formation of dye aggregates is a major synthetic challenge due to their typically inhomogeneous self-assembly, which limits control over their higher-order organization. To address these challenges, synthetic DNA-templated pseudoisocyanine (PIC) J-aggregates were recently introduced. However, the dependence of the photophysics of the superradiant exciton on the underlying DNA template length and the impact of static disorder on energy transfer through these PIC J-aggregates remain unknown. We examine the delocalization length progression of superradiant PIC excitons by varying the length of poly-A DNA tracts that template PIC J-aggregates. We then investigate the energy-transfer efficiency from PIC J-aggregates with DNA duplex template length, which we found to be limited by static disorder. Utilizing the self-assembled and selective formation of superradiant excitons on DNA provides a platform to determine the function of delocalized excitons in the context of nanoscale energy transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.