Abstract

This article describes the results of a coupled photophysical and photobiological study aimed at understanding the phototoxicity mechanism of the antimalarial drugs amodiaquine (AQ), primaquine (PQ) and chloroquine (CQ). Photophysical experiments were carried out in aqueous solutions by steady-state and time-resolved spectrometric techniques to obtain information on the different decay pathways of the excited states of the drugs and on the transient species formed upon laser irradiation. The results showed that all three drugs possess very low fluorescence quantum yields (10(-2)-10(-4)). Laser flash photolysis experiments proved the occurrence of photoionization processes leading to the formation of a radical cation in all three systems. In the case of AQ the lowest triplet state was also detected. Together with the photophysical properties the photobiological properties of the antimalarial drugs were investigated under UV irradiation, on various biological targets through a series of in vitro assays. Phototoxicity on mouse 3T3 fibroblast and human keratinocyte cell lines NCTC-2544 was detected for PQ and CQ but not for AQ. In particular, PQ- and CQ-induced apoptosis was revealed by the externalization of phosphatidylserine. Furthermore, upon UV irradiation, the drugs caused significant variations of the mitochondrial potential (Deltapsi(mt)) measured by flow cytometry. The photodamages produced by the drugs were also evaluated on proteins, lipids and DNA. The combined approaches were useful in understanding the mechanism of phototoxicity induced by these antimalarial drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.