Abstract

The photooxygenation of α-terpinene was investigated as a benchmark reaction in an advanced LED-driven flow reactor module, both from an experimental and modelling point of view. Ethanol was used as a green solvent and rose Bengal was chosen as a cheap sensitizer of industrial importance. Firstly, the kinetic law based on all mechanistic steps was established for the chosen photooxygenation. From this, the set of operating parameters potentially influencing the photoreaction rate were identified. Subsequently, experiments were carried out under continuous-flow conditions to screen these operating parameters, namely concentration of α-terpinene, concentration of photosensitizer, residence time, structure of the segmented gas-liquid flow and nature of the reagent gas phase (air versus pure oxygen). Finally, the conditions enabling minimization of sensitizer bleaching were established. It was also shown that the hydrodynamic characteristics of the gas-liquid flow can have an effect on the conversion levels. From this, a simplified model was proposed to predict the conversion at the reactor’s outlet when pure oxygen was used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.