Abstract

Neutrons interacting with atomic nuclei in most of the materials included in the current fusion reactor designs—notably tungsten, ferritic and stainless steels, copper alloys—generate a γ-photon flux that is comparable in magnitude and energy with that of the neutrons, and which in turn generates an intense flux of high-energy electrons in the materials themselves. The occurrence of these γ- and electron fluxes has implications, among others, for the mobility of crystal defects in the materials, for the stability of the plasma, and for the internal heating of reactor components. While a highly spatially resolved numerical calculation of neutron, photon, and electron fluxes on the reactor scale is computationally unfeasible, it is possible to provide estimates based on solutions of Boltzmann's transport equation in a stationary and homogeneous material. Within their limits of validity, these estimates are robust and straightforward and they enable studying photon and electron generation in various materials, under different fission and fusion irradiation conditions and at various locations inside a reactor. We show that the irradiation environment provided by the IFMIF irradiation facility is similar to the expected fusion power plant conditions both in terms of the energy and intensity of photons and electrons generated by the neutrons in tungsten and steels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.