Abstract

As an elementary particle, a photon that carries information in frequency, polarization, phase, and amplitude, plays a crucial role in modern science and technology. However, how to retrieve the full information of unknown photons in an ultracompact manner over broad bandwidth remains a challenging task with growing importance. Here, we demonstrate a versatile photonic slide rule based on an all-silicon metasurface that enables us to reconstruct incident photons’ frequency and polarization state. The underlying mechanism relies on the coherent interactions of frequency-driven phase diagrams which rotate at various angular velocities within broad bandwidth. The rotation direction and speed are determined by the topological charge and phase dispersion. Specifically, our metasurface leverages both achromatically focusing and azimuthally evolving phases with topological charges +1 and −1 to ensure the confocal annular intensity distributions. The combination of geometric phase and interference holography allows the joint manipulations of two distinct group delay coverages to realize angle-resolved in-pair spots in a transverse manner- a behavior that would disperse along longitudinal direction in conventional implementations. The spin-orbital coupling between the incident photons and vortex phases provides routing for the simultaneous identification of the photons’ frequency and circular polarization state through recognizing the spots’ locations. Our work provides an analog of the conventional slide rule to flexibly characterize the photons in an ultracompact and multifunctional way and may find applications in integrated optical circuits or pocketable devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.