Abstract

Recent investigations in neuromorphic photonics exploit optical device physics for neuron models, and optical interconnects for distributed, parallel, and analog processing. Integrated solutions enabled by silicon photonics enable high-bandwidth, low-latency and low switching energy, making it a promising candidate for special-purpose artificial intelligence hardware accelerators. Here, we experimentally demonstrate a silicon photonic chip that can perform training and testing of a Hopfield network, i.e. recurrent neural network, via vector dot products. We demonstrate that after online training, our trained Hopfield network can successfully reconstruct corrupted input patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.